
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5265 310

Lost Update Problem, Pessimistic and Optimistic

Concurrency

Ala Yusef

Department of Computer Science, Sacred Heart University, Bridgeport, CT, USA

Abstract: In this paper, lost update problem occurs when two users read and update the same data in a particular row

of the same database at the same time. one of the main problems found in tools that support MDE is the fact that little

attention is paid to questions related to the platform features in the software development trajectory. Many machine

learning algorithms iteratively transform some global state (e.g., model parameters or variable assignment) giving the

illusion of serial dependencies between each operation.

Keywords: Update, Pessimistic, Optimistic, Concurrency, Roles.

I. INTRODUCTION

The lost update problem occurs when two users read and

update the same data in a particular row of the same

database at the same time. The lost update problem can be

happened when the users are modifying some data without

knowing about that there are other users are updating the

same data that he or she is updating. The result of that, the

last user who has updated the data is going to have to

correct amount or values [1]. Deadlock is a case that

happens when two or more users want to use the same

resource at the same time by blocking each another to get

to the resource. Clearly the deadlock exists in transaction

tables in database, especially when there is a group of

blocked transactions each having a data and waiting to get

another data that held by another transaction. Obviously

no one of them have the ability to continue unless the

other transaction unlocked the data. In the main while they

are losing and wasting their time and nothing can be done

because they are waiting for each other.

The optimistic concurrency term means that there are two

or more than two users updating the same row at the same

time without locking each other. Whenever that occurs one

of those users is going to update the data and the second

user will get a message that the data has been updated, so

the second user will notify the changes that just happened.

pessimistic concurrency means only one user locking the

row to disallow another user to update the same data at the

same time [3]. One of the advantages of pessimistic

concurrency is that the user ensures that the data has been

updated to the database safely. Another advantage is it

easy to be implemented. It has some disadvantages such as

it is not fast as the optimistic concurrency, and it is not

able to scalable which many it is not good for online stores

because it is tied for limited users.

The aim of this study was to develop a successful PPI with

a strong theoretical and empirical foundation that can

address he weaknesses and limitations of previous work,

as well as increase participant compliance [2]. A wealth of

research supports the cultivation of optimism as an

individual skill that can improve psychological well-being.

Optimism involves a positive outlook on life, both during

times of success and struggle (Segerstrom, 2006).

Optimistic people believe that good things will happen to

them in the future and that their goals are achievable.

Optimism is strongly correlated with positive affect and

better coping in a wide variety of stressful situations

(Carver, Schier, & Segerstrom, 2010). It is also associated

with fewer mental and physical health symptoms (Lench,

2011), increased motivation and effort, and increased

engagement with one’s goals (Segerstrom, 2006). Taken

together, research suggests that being optimistic is

associated with various indices of positive functioning.

II. TRANSACTION COMMIT

On commit, the STM acquires the locks corresponding to

the objects in its log. The system makes use of the fair

multiple-reader, single-writer version of the MCS lock in

[2] to allow different threads to commit concurrently even

if their read-sets overlap. These locks build a queue of

requestors to provide FIFO order, while allowing for

multiple concurrent readers. The lock header is containing

the current reader count and pointers to the queue tail and

the first writer in the queue. Each lock requestor allocates

a queue node in shared memory, and adds it to the end of

the queue determined by the tail pointer. Threads waiting

for a lock spin-wait in their own queue node. When a

writer receives a lock, it proceeds, and on release, it

notifies the next node in the queue. Readers must,

additionally, increase and decrease the reader count and

notify consecutive readers to allow for concurrent reading.

The multiple updates of this reader count field can

generate coherence contention.

A lock-based STM adds four main overheads when

compared with running the same transactions on a native

HTM First, the locking mechanism itself is not necessary

in a HTM system. Second, transactions need to maintain

the read-set and write-set lists. This introduces a list-

search for each object accessed, and an increase in the

used memory. In HTM systems the hardware itself tracks

the objects accessed in the transaction (with read and write

bits, signatures or other mechanisms). Third, on commit,

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5265 311

the lists have to be traversed to lock and validate the

objects. Fourth, the indirection-based object structure

makes it necessary to copy entire objects when opening

them for update even if only a single field is going to be

touched [4].

III. OPTIMISTIC CONCURRENCY

Many machine learning algorithms iteratively transform

some global state (e.g., model parameters or variable

assignment) giving the illusion of serial dependencies

between each operation. However, due to sparsity,

exchangeability, and other symmetries, it is often the case

that many, but not all, of the state-transforming operations

can be computed concurrently while still preserving

serializability: the equivalence to some serial execution

where individual operations have been reordered. This

opportunity for serializable concurrency forms the

foundation of distributed database systems. For example,

two customers may concurrently make purchases

exhausting the inventory of unrelated products, but if they

try to purchase the same product then we may need to

serialize their purchases to ensure scent inventory. One

solution (mutual exclusion) associates locks with each

product type and forces each purchase of the same product

to be processed serially [7]. This might work for an

unpopular, rare product but if we are interested in selling a

popular product for which we have a large inventory the

serialization overhead could lead to unnecessarily slow

response times. To address this problem, the database

community has adopted optimistic concurrency control

(OCC) [14] in which the system tries to satisfy the

customers’ requests without locking and corrects

transactions that could lead to negative inventory (e.g., by

forcing the customer to check out again) figure 1.

Fig 1: OPTIMISTIC CONCURRENCY

IV. PRECISE SERIALIZATION

The precise serialization (PS) algorithm solves the

unnecessary transaction restart problem of the forward

validation algorithm by checking every different type of

data conflict and explicitly recording serialization order

among transactions. It arranges the serialization order of

two transactions whenever the two have a data conflict.

The PS algorithm uses two different ordering actions to

arrange serialization order of transactions: forward and

backward ordering. The forward ordering places Tc~ after

T v in execution history, i.e., their serialization order

becomes T v --~ Tc~. This ordering is used to resolve

conflicts incurred by write operations of T~R, i.e., read-

write and write-write conflicts. The serialization order

reflects the fact that Tc~'S updates do not affect the

operations of T v. To resolve the other conflict type, i.e.,

write-read conflicts between T v and T~R, the PS

algorithm, unlike FV, does not unconditionally restart

Tc~. Instead, PS places To, ahead of T v in execution

history, i.e., To, ---~ T v, which implies that TcR did not

read from T v. This placement of To, ahead of T v in

execution history is referred to as the backward ordering.

In the PS algorithm, a running transaction, Tc~, restarts

only when it is involved in one or more conflicts caused

by its write operations (read-write and write-write

conflicts) as well as conflicts caused by its read operations

(write-read conflicts) with a validating transaction T v. In

such a situation, PS will attempt to place Tc~ both behind

and in front of T v in execution history, which means a

violation of serializability figure 2. Such Tc~ is referred to

have an antagonistic conflict with T v and needs to be

restarted. Note that such a transaction restart is inevitable

and absolutely necessary to ensure data consistency [8].

Fig 2: PRECISE MODEL

V. SYMBOLIC MODULAR DEADLOCK ANALYSIS

Concurrent programs are prone to a variety of thread-

safety violations arising from the presence of data races

and deadlocks. In practice, as data races are abundant and

difficult to debug, they have garnered considerable

attention from the program analysis community. A knee-

jerk response to avoiding race conditions is evident in the

prolific use of locking constructs in concurrent programs.

Languages such as Java have promoted this by providing a

convenient synchronized construct to specify mutual

exclusion with monitors [6]. Locking is sometimes naively

used as a “safe” practice, rather than as a requirement.

Overzealous locking not only causes unnecessary

overhead, but can also lead to unforeseen deadlocks.

Deadlocks can severely impair real-time applications such

as web-servers, database systems, mail-servers, device

drivers, and mission-critical systems with embedded

devices, and typically culminate in loss of data,

unresponsiveness, or other safety and liveness violations.

we focus on deadlocks arising from circular dependencies

in synchronization constructs such as locks and signaling

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 5, Issue 2, February 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5265 312

primitives. Languages such as Java combine the mutual

exclusion provided by locks with the cooperative

synchronization provided by signaling primitives into a

single monitor construct. In this paper, we use the abstract

term lock to mean both specialized lock variables in

languages such as C, C++ /pthread, and monitors used for

enforcing mutual exclusion in Java. Deadlock detection is

a well-studied problem, and both static and dynamic

approaches have been proposed (Havelund 2000; Agarwal

and Stoller 2006; Corbett 1996; von Praun 2004; Artho

and Biere 2001;Naiketal.2009; Williams et al. 2005).

Typically, such techniques construct lock-order graphs

that track dependent- cites between locks for each thread.

Lock-order graphs for concurrent threads are then merged,

and a cycle in the resulting graph indicates a possibility of

a deadlock. Such techniques typically assume a closed

system, and are thus useful for detecting existing

deadlocks in a given application. analyzing concurrent

libraries for deadlocks has two main aspects: First of all,

we wish to identify if, for any client, there are library

methods that can be concurrently called in a manner that

causes a deadlock. This is termed the deadlock ability

problem. Secondly, we wish to use the results of this

analysis to search for the existence.

We have shown how optimistic concurrency control can

be usefully employed in the design of distributed machine

learning algorithms. As opposed to previous approaches,

this preserves correctness, in most cases at a small cost.

We established the equivalence of our distributed OCC

DP-means, OFL and BP-means algorithms to their serial

counterparts, thus preserving their theoretical properties.

In particular, the strong approximation guarantees of serial

OFL translate immediately to the distributed algorithm.

Our theoretical analysis ensures OCC DP-means achieves

high parallel is without ascribing correctness. We

implemented and evaluated all three OCC algorithms on a

distributed computing platform and demonstrate strong

scalability in practice [10]. We believe that there is much

more to do in this vein. Indeed, machine learning

algorithms have many properties that distinguish them

from classical database operations and may allow going

beyond the classic formulation of optimistic concurrency

control. In particular, we may be able to partially or

probabilistically accept non-serializable operations in a

way that preserves underlying algorithm invariants. Laws

of large numbers and concentration theorems may provide

tools for designing such operations. Moreover, the convict

detection mechanism can be treated as a control knob,

allowing us to softly switch between stable, theoretically

sound algorithms and potentially faster coordination-free

algorithms [11].

VI. CONCLUSION

one of the main problems found in tools that support MDE

is the fact that little attention is paid to questions related to

the platform features in the software development

trajectory. As a result, MDE tools are limited to certain

platforms and PIM-into-PSM model transformation

processes. In order to achieve efficient, easily adaptable

model transformation processes, the specification of

independent platform features is necessary. Concerning

RTOS-based embedded software development, the

benefits in using this approach become even more evident

due to both the inherent complexity of this kind of

software and the existence of a wide variety of applicable

platforms.

We are concave able but less costly than persistent save

points. In a system where ceded here with volatile save

points or mark points, which are not the level of data

contention is low and the check pointing overhead is high,

check pointing will result in degraded performance

(increased transaction response time) even when adequate

processing resources are available. This is especially so

when multiple checkpoints are taken. An adaptive method

need be introduced to suppress check pointing at low data

contention levels and activate it only when the data

contention level is high.

REFERENCES

[1] Gray, J., & Lamport, L. (2006). Consensus on transaction commit.

ACM Transactions on Database Systems (TODS), 31(1), 133-160.
[2] Lamport, L., & Fischer, M. (1982). Byzantine generals and

transaction commit protocols (Vol. 66). Technical Report 62, SRI

International.
[3] Deshmukh, J. V., Emerson, E. A., & Sankaranarayanan, S. (2011).

Symbolic modular deadlock analysis. Automated Software

Engineering, 18(3-4), 325-362.
[4] Deshmukh, J., Emerson, E. A., & Sankaranarayanan, S. (2009,

November). Symbolic deadlock analysis in concurrent libraries and

their clients. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering (pp. 480-491).

IEEE Computer Society.

[5] Farzan, A., Chen, F., Meseguer, J., & Roşu, G. (2004, July). Formal
analysis of Java programs in JavaFAN. In Computer aided

verification (pp. 501-505). Springer Berlin Heidelberg.

[6] Lee, J. (1999). Precise serialization for optimistic concurrency
control. Data & knowledge engineering, 29(2), 163-178.

[7] Lehr, M. R., Kim, Y. K., & Son, S. H. (1995, June). StarBase: a

firm real-time database manager for time-critical applications. In
Real-Time Systems, 1995. Proceedings., Seventh Euromicro

Workshop on (pp. 317-322). IEEE.
[8] Gray, J., & Lamport, L. (2006). Consensus on transaction commit.

ACM Transactions on Database Systems (TODS), 31(1), 133-160.

[9] Mohan, C., Strong, R., & Finkelstein, S. (1983, August). Method
for distributed transaction commit and recovery using Byzantine

agreement within clusters of processors. In Proceedings of the

second annual ACM symposium on Principles of distributed
computing (pp. 89-103). ACM.

[10] Gray, J. (1990). A comparison of the Byzantine agreement problem

and the transaction commit problem. In Fault-tolerant distributed
computing (pp. 10-17). Springer New York.

[11] McCarthy, D., & Dayal, U. (1989, June). The architecture of an

active database management system. In ACM Sigmod Record (Vol.
18, No. 2, pp. 215-224). ACM.

